
Plan 9 on modern, large AMD64 systems

Geoff Collyer

History

The late Jim McKie created the 9k 64­bit­capable kernel from the 32­bit Plan 9 kernel. I
took the March 2014 9k from Bell Labs, adapted it to work with larger memories (the ori­
ginal was limited to 600MB), and ported and updated drivers from Plan 9. The neces­
sary pieces to make a terminal kernel are still absent, notably VGA support, which
requires x86 Real mode and constant maintenance, other than VESA graphics. I have
deliberately omitted support for obsolete or really annoying hardware.

Current Status

To date, there are two architectures supported, k10 and rv (for 64­bit RISC­V). The
k10 port runs on AMD K10 and later AMD64 CPUs, and compatible Intel64 CPUs. It
has been successfully run as a CPU or file server on

" ASUS P10S WS motherboards

" Supermicro X11SCL­F motherboards

" PC Engines APU2C4 and APU2E4 systems

" Intel NUC5i7s

This port is 64­bit capable. The kernel seems to now be 64­bit clean, and fossil, venti,
malloc, and memset have been adapted to 64­bit memories, when appropriate. The rest of
the C library has not yet been converted (mostly to use uintptr instead of ulong), but this
is enough to enable use of more than 4GB of memory.

The memory management code can exploit up to 48 address bits (the AMD64 default)
currently. It makes no use of 5­level page tables. One address bit is consumed by kernel
memory mapping, so this permits the use of 128TB of memory, which should be enough
for a little while. In principle, this port can use arbitrary amounts of memory, BIOS per­
mitting. It needs 2GB of contiguous non­reserved memory at 0. Each 32GB of user
memory is described by 1GB of kernel data structures (worst case, assuming only 4K
pages), but those data structures can reside above 4 GB. Memories of 4, 16, 32 and 64
GB have all been exercised.

MONITOR and MWAIT instructions are now used where possible when idling or wait­
ing for a lock to be released. This conserves power, reduces heat produced, and should
reduce instructions executed on busy many­core systems. Hardware has these instruc­
tions, though they can be disabled in some BIOSes (don’t do it!), but VMs don’t always
implement them, even on machines that do.



­ 2 ­

Supported Peripherals

MSI interrupts will be used when available, and MSI­X interrupts will not (there seems
to be little or no benefit to MSI­X). When BIOS tables contain obviously bogus IRQ
numbers (e.g., 0), 9k will assign unique vectors instead of using the bogus IRQs, with or
without MSI.

These are the supported peripherals:

" optional serial console on COM1

" serial ports on PCI(E) card

" Intel’s 1 and 10 GB/s Ethernet controllers

" SATA and NVME disks and SSDs are standard; ATA and AOE disks can be easily
made to work if needed.

" EHCI USB can be configured in; I don’t use it, in large part because of the truly
excessive interrupt load it often creates. The presence of xHCI controller(s) seems to
interfere with EHCI.

Surprises

Since about 2015, at least some of Intel’s [MIP]CH/chipset AHCI controllers have an
incompatible layout of a few PCI configuration space registers needed to enable the con­
troller and its ports. Intel needed to change something to accomodate more than 8
SATA ports, and they had painted themselves into a corner. Instead of maintaining
compatibility (Intel’s main virtue), they chose to silently break compatibility. The new
layout can be detected if the controller supports more than 8 ports, but not all of the new
(Series 100 and later) controllers do.

Limitations

It’s useful to have a /386/9pccpu system around for running gs, bridge(3), and
aux/pm.

Rebooting by direct loading of 386 9 and amd64 9k kernels now works, but Intel has
a lot to answer for.

Page Table Hierarchy

size use and level_________________________
4K small page, pte level
2M large page, pd level
1G pdp level

512G pml4 level
256T pml4 total



­ 3 ­

Kernel Virtual Memory Map

From top of memory down:

address name size use______________________________________________________________________________
­2M PMAPADDR 2M? ?
­8M PDMAP 6M? ?

­512M VMAP 256M
­2G KSEG0 2G kernel low memory to ­512M above (VMAP), includes

PDMAP in last kernel GB, may include Page structs.
˜­513G KSEG1PML4

­1T KSEG1 512G only embedded PML4 & page tables
­128T KSEG2 ­ all non­KSEG0 physical memory above. Page structs

often go here.
­256T PML4BASE ­ base of PML4, holds entire addr space______________________________________________________________________________

0 - 128T user process


