
Widening C Library Size Arguments in Plan 9 and 9k

Geoff Collyer

Integer types in 64­bit ports

9k is a 64­bit capable version of Plan 9. 9k as delivered had widened many ulongs
to uintptr, which can hold a pointer, as part of making the kernel 64­bit clean, but
it did not address actually exploiting the larger address space, particularly in
user processes.

For 32­bit Plan 9 (and potentially 9k) systems, uintptr is ulong. For 64­bit systems,
uintptr is uvlong. Thus changing ulong in a declaration to uintptr is a no­op on
32­bit systems, thus harmless.

An obvious case of wanting libc functions to have their size arguments (and
internal integers) widened is malloc. If one wants, as with the kernel’s Pages
array, to allocate an array that may be larger than 2 or 4 GB, malloc itself (in the
kernel), mallocz (in user space), or the user will likely invoke memset to zero such
an array. To avoid making a special case of such arrays (per Intel’s x86 compiler
mistakes), memset also needs to have its final argument widened to uintptr (and
sizeof’s result should have the same type, which requires only a very small
change to the C compiler common code).

False economy

POSIX’s size_t and Plan 9’s analogous usize really need to be uintptr or not be
used at all (Native Plan 9 is not bound by POSIX). If they are shorter than
uintptr, one gets into the world of pain from Intel’s past mixing 16­ and 32­bit
pointers in a short­sighted attempt at efficiency. Think near, far, etc. pointers. It
is far better to accept perceived short­term efficiency losses by using 64­bit
integers on 64­bit ports. The long­term trends are to machines with larger
memories and wider CPUs. It’s difficult to buy a 32­bit­only Unix­capable sys­
tem or one with less than 1GB of RAM these days. The long dominance of 32­bit
systems was temporary.

N.B.: This has virtually no effect on 32­bit systems (since
uintptr is ulong), so doesn’t break compatibility with existing
Plan 9 systems, while allowing programs that wish to allocate
vast arrays of buffers (e.g., fossil or venti) to do so straight­
forwardly.



­ 2 ­

Trade­offs

If you have no need of large address spaces, you need not adopt the change to
malloc and memset’s final arguments.

N.B.: If you have more than about 8GB of RAM, you need
large address spaces (for Page structs).

This is an entirely optional change, and not an integral part of 9k, but be aware
that you will need to use an alternate libc/riscv64/memset.s (pro­
vided) on riscv64 systems if you choose to not widen arguments.

N.B.: As long as your libc.h’s declaration of memset, etc.
agrees with the implementations of memset, etc. in your C
library, either choice of argument width will work.


